Homework 2

(Due date: February 13th @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

a) Compute the result of the additions and subtractions for the following fixed-point numbers (5 pts):

UNSI	GNED	SIGNED				
1101.1 +	1.01011 -	1010.01 -	10.1100 +	0.0011011 -		
0.1100101	0.0011011	101.01001	01.01100101	1.01011		

b) Multiply the following signed fixed-point numbers (6 pts):

01.1001 ×	10.0101 ×	1010.001 ×
1.001011	11.011	01.100101

c) Get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers:

100.1001 ÷	1.011 ÷	1.01011 ÷
1.0101	0.01001	010.1011

PROBLEM 2 (9 PTS)

- a) We want to represent numbers between -256 and 255.97. What is the fixed-point format that requires the fewest number of bits for a resolution better or equal than 0.001? (3 pts).
- b) We want to represent numbers between -63.42 and 65.69. What is the fixed-point format that requires the fewest number of bits for a resolution better or equal than 0.0015? (3 pts).
- c) Represent these numbers in Fixed Point Arithmetic (signed numbers). Use the FX format [16 4]. Truncate (the LSB) and perform Saturation when required.

I		
2048.25	-117.53125	-129.375

PROBLEM 3 (8 PTS)

a) Complete the table for the following fixed-point formats (signed numbers): (3 pts)

Fractional bits	Integer Bits	FX Format	Range	Dynamic Range (dB)	Resolution
11	5				
15	9				

b) Complete the table for these floating point formats (which resemble the IEEE-754 standard). Only consider ordinary numbers.

Exponent	Sigr	nificand	Min Max		Danga of a	Range of
bits (E)	bits (p)	FX Format	MIU	Max	Range of e	significand
8	6					
10	13					
12	32					

PROBLEM 4 (19 PTS)

a) For the given IEEE-754 floating-point numbers (displayed as hexadecimals), complete: bits in the fields (sign, biased exponent, significand) and significand's FX format (4 pts)

sign e+bias	FX format of significand:
significand	
3DECAFC0FFEE5000 (double - 64 bits sign e+bias	s) FX format of significand:
significand	

b) Calculate the decimal values of the following floating-point numbers represented as hexadecimals. Show your procedure.

	Single (32 bits)			Double (64 bits)		
✓	803AD0BE	✓ 7ECE4710	~	7ffCabfeeba5ed00	✓ ECE4710306D80C60	
✓	BEA7BEEF	• /FCE4/10	✓	000C0FFEEFAD0000	• ECE4/10A96B60C60	

PROBLEM 5 (44 PTS)

Perform the following 32-bit floating point operations. For fixed-point division, use 8 fractional bits. Truncate the result when
required. Show your work: how you got the significand and the biased exponent bits of the result. Provide the 32-bit result.

\checkmark	7F800000 + C512290A	✓	B3BEE000 - 8037C000	\checkmark	5A09C000 × CD080000	✓	C9744000 ÷ 81C90000
✓	C0D90000 + 42EAC000	✓	80123000 - 004E8000	\checkmark	7CDA0000 × 80200000	✓	000C0000 ÷ BACA0000